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This paper calculates the two-dimensional flow of a two-component
cold nondissipative plasma. The condition is found for which a non~
dissipative plasma can escape from a magnetic fleld.

A distinction must be made between those plasma accelerators )
which operate at high densities » > 10'%¢m -3 and those which oper-
ate at low densities (» <G 10 cm™),

In the first case the acceleration of ions may occur not only as a
result of internal electric fields, but also as a result of the collision
of ions with each other (ordinary thermal acceleration) or the colli~
sion of jons with electrons moving as a result of the Hall* effect along
the accelerator channel,

In the second case the only mechanism capable of accelerating

the ions is the internal longitudinal electric field [1, 2], This treat-
ment excludes those systems [3], in which the ions are accelerated

as a result of kinetic instabilities.

The present paper treats the acceleration of a low~density plasma.

A box-type accelerator has been chosen by way of example, since in
this case the peculiarities of low-density accelerating systems are par-~
ticularly marked.

Three conditions must be fulfilled in order to create a box~type
accelerator operating at low densities.

Firstly, we must make use of segmented electrodes, since other=

wise it is impossible to create in the space inside the accelerator elec-
iric fields of the type (2.11) necessary for accelerating the plasma.
For continuous electrodes the structure of the electric field in the
space inside the accelerator results from the superposition and inter-
acrion of exceedingly complex processes at the boundaries and in the
vicinity of the electrodes,

Secondly, if the system under consideration is intended to produce
high velocities, then it is necessary to create conditions under which
there is no interaction of the fast particle flux with the walls, In other
words, the current in the systemn must be controlled electromagneti-
cally and not by means of the walls, which is the case in ordinary
gasdynamic nozzles.

It should be noted that in high-velocity plasma accelerators which
produce ions with energies =100, it is essential to eliminate the in-
teraction of the current with the walls at higher densities also.
Thirdly and lastly, conditions must be created which ensure the
escape of the plasma from the magnetic field,

It was shown in [4] that the magnetic field is in fact "frozen”

into the electronic component of the plasma, and so a necessary con-
dition for a compensating current to escape from the magnetic field
is that the exchange parameter*® ’

E>1

should be large,

The present paper develops the theory of the supersonic part of a
box-type accelerator. It should be noted that many papers [5~8] have
been devoted to the theory of the box~type accelerator, These, how-
ever, were written on the assumption either that the medium is in-
compressible or for the quasi-one-dimensional approximation in which

*In is natural to call this method of acceleration ohmie, singe it is
due to the ohmic resistance of the plasma,

**In accordance with [4] the exchange parameter is understood to be
the ratio of the discharge current I, to the ion current I; escaping from
the accelerator § = Io/ I;, 1; = eg/m, where q is the mass flow rate
of working medium,

the flow is of necessity given a particular geometry. These assump-
tions are, of course, very far removed from reality, at least as far as
the production of high-velocity flows is concerned,

1. Initial equations. If precautions are taken so
that the plasma flux is kept away from the walls and
if its density is not very large, then dissipative pro-
cesses may be neglected. If, in addition to this, the
flow of ions may be taken to be substantially super-
sonic, then the steady-state ion.motion will be de-
scribed by the equations
dvi

m;i—t~=e(ﬁ+%vix H). (1.1)

divnav; =0,
Here v; is the ion velocity, E, Hare the electric
and magnetic field strengths, e, m are the charge
and mass of an ion, n is the ion concentration, which
is taken to be equal to the electron concentration. We
assume almost complete ionization and neglect the
presence of neutrals,

Fig. 1

Similarly, if the electron temperature, measured
in eV is small in comparison with the potential differ-
ence applied to the accelerator, then apart from the
layers close to the electrodes we may take the follow-
ing system of equations as a good approximation for
the electron component

divev, =0, E-+2v.xH=0. (1.2)

The Hall effect is allowed for in the second equa-
tion (1.2), where v, appears instead of v;. 1t follows
from the second equation (1.2), firstly, that the lines
of force vy of the magnetic field are equipotentials of
the electric field

=0 1.3)

and, secondly, that the electron drift takes place over
the equipotential surfaces (Fig. 1). The problem is to
calculate the motion of ions and electrons described
by Eqs. (1.1) and (1.2) under the conditions of a box-
type accelerator,

In the box-type accelerator {Fig. 2) the magnetic
field may be taken to be given, i.e., we may neglect
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the self magnetic field of currents flowing in the plas-
ma. If we confine ourselves to the case of flat mag-
netic fields, when all the lines of force lie in the
planes y = const, then they may be described by one
component of the vector potential

Ho(z)dz — Hy (z) =

Y 9)

Ay(z, z) =§

Here Hy(x) is the field strength in the plane of sym-
metry z = 0,

In the particular case when the magnetic field H;
decreases linearly,

Hy=Hypy(t —z/L), (1.%)
the component Ay is equal to
Ay = — Y Holnp, VY= (1 —=z/LP~—27/L(1.6)

The equation of the lines of force has the form [9]

P = const, y = const .

Consequently, in this case Eq. (1.3) may be written
in the form

=@ (Y, ). (1.7)

For a given magnetic field the function ¢(x, y, 0)
may be arbitrary. However, it will be clear in what
follows that it is convenient to specify the function
@(x, 0, 0), since for z = 0 we must choose ¢ to be a
function of y such that the plasma flow is of the type
required,

In order to solve the fairly complex system (1.1),
(1.2), (1.7), we have recourse to the approximation
of ion-optics, i.e., we specify one "basic" trajectory
with a known law of variation of ion velocity along it
and seek all quantities in the form of series of powers
of the departure from the basic trajectory. This is
valid since the transverse dimensions of the box-type
accelerator are small compared with its length, We
take the x axis as the basic trajectory. Then the quan-
tities may be expanded as follows:

v = v (Z) b Yo (2) + ozo () ..
ue = Uy (2)  +yuge () +2u(a) + ..
vy = Youy () + 205 () + . .«
Uy =uy {x) Yy (&) + Uy (z) + ...
v, = Yo (2) + 2o (2) + . .
U, = Yugg () + 2zugg () + . . .
n=n,(x) “yny(x)-+zmz(x) +.. (1.8)

Similarly, we expand relation (1,7) in powers of y:

9 = @5 () + ¥ (V) + otPe, () + ... . (1.9)

Setting expansion (1.8), (1.9) in Egs. (1.1), (1.2),
we obtain a system of equations for the coefficients of
the expansion.

It turns out that in addition to very complicated
solutions, this system has the following simple solu-
tion with an accuracy to terms of the first order of
smallness inclusive:

vx==;v1+y;f;,;ﬂo<x>+0+. Ce

ux=?}1+y7n“c‘”0(-7f')+0+
UU=O—|—IO+O+_...,
¢ 99 (Hv) ,
uy—‘}’{oa—xg —Y 55— — +04..

=0
vz:0+0+z?733+...,
Up = 0 + 0 + zogg -+ .. ., (1.10}

v1Hy (2)
—

n’LU]_

T T !z~ = o= const, o= —

n3 =0, mv; 4+ nwg =0, gy - Ryllgy = 0 .

8z
The ‘quantity vy3 is determined by a Riceati~type
equation

! /d
% (0,035 + vas?) = Hy TCP-IE o (1.11)

The particular solution which has been found is of
interest because it describes a plasma flow such that
the ion velocity has only the longitudinal components
vx; Vz and the current density j = en(v — u) has only
one component jy.

Fig, 2

2. Investigation of the solution (1.10), Our atten-
tion is first of all drawn to the fact [see (1.10)] that
the plasma flux is broadened along the z axig, This
effect is due to the convexity of the magnetlc lines of
force. In one-dimensional theories, however, it was
not allowed for and was formally "suppressed,® for
example by walls z = const confining the flow with re-
spect to z. Such a form of "suppression" can be as-
sumed only for the acceleration of a dense plasma to
velocities which are not very high and is inapplicable
to the acceleration of a rarefied plasma to high veloec-
ities. It is a simple matter to caleulate the spread of
the flux in the case when the magnetic field varies
linearly according to (1.5), and the potential ¢, (¥) is
a linear function of #:

Po = Pog¥hs Polz=0 = Poo (4 ‘—Ji P.ooo@.1)
Then on the basis of (1.10) the variation of veloc-
ity vy along the x axis is given by the formula

1
2e@oo /

vy o=, Y1 — (1 —2/L)2, - ) 2.2)

maxvzvmz<
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Setting (2.1) and (2.2) in (1.11), we find the ex-
pression for vy

» zhcxp (2arccos §) —1 ¢
27 “7L exp(2arcoos o+1°

Ll

1—1, (2.3)

and at the same time with the help of the equation

dz / dr = vz/ Uy, (2.4)

we determine the boundary of the beam in the xz plane:

2, = 2, ch (arc cos {) . - (2.5)

Here z; is the beam width at the entrance to the
accelerator channel. The beam width at the exit, i.e.,
for x = L (£ = 0) is equal to

(Zs)max = 2o ¢h Y, =~ 2,63z, . (2.6)

Knowing how the beam broadens, we may find the
variation of density in the y = 0 plane, It follows from
the solution (1.10) for v, that

nyv 2, = const 2.7)
Thus
— const
zo [ch (arceos &) vy, VI—02° 2.8)

The last equation of (1.10) shows that the plasma
density depends on y. In particular, if the field de-
creased linearly

n_—_nl[1+yeH°° w] 2.9)

Vet (4 — 2)% |

It was noted above that the solution obtained de-
scribes a plasma flow which has only one y compo-
nent of current. This current is due to the drift of
electrons in the y direction under the action of the
longitudinal electric field E¢. The fact that the drift
velocity uy is a function of y (1.10) leads to a vari-
ation of the plasma density in the direction of the y
axig [see (2.9)].

Vv

?:[)

N

Fig. 3

For the case (1.5), (2.1) it is not difficult to see
that the magnitude of the current density in the cross
section y = 0 is equal to

2
v pime

=€ Tl ™=

vpme
Rio =,

=" (2.10)

Ry
enm —1-

If we take into account that ni o0 for x - 0, then
j — = at the entrance, :

The electric potential in the- channel is described
by the expression

q>=%(x.0)_%yvlﬂo(x)+~--- 2.11)
The first term of this expression describes the
longitudinal electric field which accelerates the ions.
The second term describes the transverse field which
balances the Lorentz force and ensures that vy =0,
as well that the longitudinal velocities of ions and elec~
trons are equal, i.e., the absence of a longitudinal
current. If we let b denote the channel width, then the
potential V(x) between the electrodes will be equal to

91 () Hy (z)
p .

Viz)=b
For the case (1.5), (2.1)

V(z) = Vi 28V 1T — ©2, where Vi = YboaHg

the maximum value of the potential for

Zn=L(Y2—1)/V2=~03L.

The pattern of potential distribution in the xy plane
for cases close to (1.5), (2.1) has the form depicted
in Fig, 3. The nonmonotonic dependence of ¢ on x for
y > 0 is explained by the rapid decrease in ¢ for x —
— L. It is practically feasible to make systems*
which operate for y < 0. .

If the exchange parameter [4] is calculated for a
given system it is equal to

in the general case (see 1.10).
Here f(x) is the height of the channel. In the par-
ticular case of (1.5) and (2.1)

T
RiOT:

o] e

Ve

E= Rio= - (2.13)

In order to ensure the escape of the plasma from
the magnetic field when there is no dissipation it is
essential to make £ > 1 [4]. To determine the mini~
mal value of £ for this or that concrete system by the-
oretical means is not easy and is outside the limits of
the present paper.

If some a priori value §; is taken;. for example £, =
= 10, then for a given discharge rate N we automati-
cally have an expression for the discharge current

I, = EeN,

*For the coordinate system and functions (1.5) and

(2.1) selected here.
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If the velocity of flow and channel width are given
at the same time, then the field strength is found with
the help of (2.13): :

Uy, Me
]100 = TZZ{)—E‘ .
We shall now consider the question of the small pa-
rameters in terms of which the expansion (1. 8) is
carried out,

The solution (1.10) shows that everywhere, with
the exception of the neighborhood of the singular point
H = 0, the expansion may be made in terms of the
quantities

eHy VA
=Y Mo = —.

mevy’

Hence it is clear that expansion (1. 8) will be valid
over the main part of the channel, i.e., with the ex-
ception of the entrance v — 0 and the exit H — 0, only
if uyy << 1 and py << 1, However, formulas (2,12), (2.13)
show that y; ~ 1/¢ and that consequently we may ex-
pect a smoothly varying solution only for £ > 1. In
the opposite case, i.e., for £ < 1, a box-type accel-
erator will not, in all probability, be able to operate
without dissipation, or else the flow will be much de-
formed. In this connection it is natural to take & > 1
as the condition for nondissipative escape of the plas-
ma from the magnetic field. The parameter has a nat-
ural connection with the geometry of the magnetic
field, and the requirement that it be small is quite
obvious,

In conclusion we note that the supposition that the
self-induced magnetic field is small, made at the
start of the calculations, is valid if

4fcjrfn>v’”2'

Further, it is important to keep in mind that ex~
pression (2.11) describing the potential distribution
does not satisfy Laplace's equation in the general case
[10]. Thus the accelerator for which the calculations
have been made is basically a plasma accelerator. It
is essential for its normal functioning that the Debye
radius should be considerably less than the dimen-
sions of the system. This condition is, however, ful-
filled at small densities 1010 ¢m™3,

Finally, we note that neglecting the thermal pres-
sure and ohmic resistance of the plasma amounts to
neglecting the terms ~1/Ryy,, 1/M?, where Ry, is the
magnetic Reynolds number, and M is the Mach num-
ber.

In conclusion the author is grateful to A. I. Bugrov,
L. E. Kalikhman, and L, 8. Solov'ev for discussing
the questions raised.
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